
ON THE INFLUENCE OF THE NONSPHERICITY 
OF THE EARTH ON THE OPERATION 

OF A GYROHORIZON COMPASS 

(0 VLIXANII NESFERICRNOSTX ZRMLI NA RAROTU 
QIROQORIZONTKOMPASA) 

PM4 Vo1.27, No.5, 1963, pp.878-884 

L. Z. NOVIKOV 
(Moscow) 

(Received JLtne 5, 1963) 

fderkin 113 mentioned conditions for the imperturbability of a gyro- 
horizon compass, taking account of the flattening of the earth. The 
force of attraction was assumed to be directed exactly towards the center 
of the earth. An unperturbed gyrohorizon compass is a gyro frame which 
continuously indicates (under appropriate initial conditions) the true 
local vertical and the plane of the meridian (to the accuracy of a 
course correction), i.e. the whole analysis is related to gravity and 
not to the central force. Hence, the assumption mentioned does not 
affect the basic result of the investigation. 

It is shown below that the Geckeler gyrohorizon whose theory was 
given by Ishlinskii f~l is related in a definite manner to the direction 
of the central force for any hypothesis regarding the shape of the earth. 
Rence, even in an investigation of the influence of the flattening of 
the earth on the operation of a gyrohorizon it is more natural to use 
the method of taking account of the forces acting on a material system 
moving near the earth, as expounded in [2-51. The deviation of the force 
of attraction from the direction towards the center of the earth is hence 
taken into account. Imperturbability conditions, understood to be the 
conservation by the gyrohorizon of the direction of the force of attrac- 
tion and the plane of the meridian (to the accuracy of a course correc- 
t ion), as well as estimates of the errors induced in the operation of a 
Geckeler gyrohorizon by the deviation of the earth’s shape from the 
spherical, are obtained. 

1. Let a two-gyroscope compass rest on the surface of a body rotating 
with constant velocity U, whose force of attraction lies in its meridian 
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plane. Furthermore, let the equator of the sensing element of the com- 
pass be located, at the initial instant, in a plane perpendicular to the 
force of attraction; let the vector of the kinetic moment of the gyro- 
rotor lie in the meridian plane and let the hunting angle E,, of the 
gyroscopes be set by starting from the relation 

2B cos E,, = mlUR’ (1.9 

Moreover, if the moment N generated by the spring is subjected to the 
law 

iv =- 4@ 
r?LlR’ / sin x 

cos s sin E (1.2) 

then the rotor will maintain the direction of the force of attraction 
and the meridian throughout the whole time of operation of the compass. 

Here R’ is the distance from the center of buoyancy of the gyrorotor 
0 to the axis of rotation of the body; x is the angle between the 
direction of the force of attraction and the axis of rotation of the 
body; the remaining notation is the same as in [Zl. 

In the proof of this assertion, as everywhere henceforth, we shall 

start from the equations of motion of the gyrorotor relative to a co- 
ordinate system S moving progressively together with the body, but not 
taking part in its rotation, projected on the Oxyz-axes bound to the 
gyrorotor exactly as in [23 

- wz 2B cos E = n/r,, ~x2Bcoss= M, 
(4.3) 

; (2B case)= M,, -wy2Bsins=N 

Here olt, C+ and oz are the projections of the angular velocity of the 
gyrorotor (i.e. the trihedron 0xy.z) relative to the system S on the 
Oqz-axes, and Hz, My and Mz are the moments of the external forces 
applied to the gyrorotor and the inertial force of the translational 
motion. 

It is assumed that the gyrorotor is oriented at the initial instant 
so that the z-axis is directly opposite to the direction of the force 
of attraction and the y-axis lies in the meridian plane. Let us assume 
that such an orientation is also maintained later. Then 

ox = 0, w Ii= Using, wz=Ucos~ 

M, = - mlU2R’ cos x, Mg=O, Mz=O 

and equations (1.31, taking conditions (1.1) and (1.2) into account, 
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are satisfied identically, which proves the assertion. 

Conditions (1.1) and (1.2) differ from the conditions of Ishlinskii 
[2l only by the fact that the quantity R’/sin x, the distance from the 
point of suspension of the gyrorotor to the axis of rotation of the 
earth along the line of action of the force of attraction, replaces the 
radius of the earth R in (1.2). This difference is very insignificant 
and, as will be shown below, the Geckeler-Ishlinskii gyrohorizon on a 
fixed base indicates the direction of the central force with a very high 
degree of accuracy (compare with the opposite statement in LlI). 

Furthermore, the close connection between the direction of the force 
of attraction and the orientation of the gyrorotor once again confirms 
the naturalness and expediency of using formula (1.1) of [d in studying 
the operation of a gyrohorizon, i.e. the method of taking account of the 
forces acting on a material system moving near the earth which Ishlinskii 
proposed. 

However, the necessity arises here for a still clearer definition of 
all the concepts associated with the direction of the gravity force and 
the force of attraction at a given point than was given in [d. 

2. In [d, the concept of a pseudovertical as “a line connecting a 
point on the surface with the center of the earth” is introduced to- 
gether with the true vertical which coincides with the plumb line, i.e. 
the normal to the surface of the earth. The central force is hence con- 
sidered to act along the pseudovertical, although it is agreed that such 
an assumption is only a first approximation. Correspondingly, the angle 
between the vertical and the pseudovertical equals 1/2(R1u2/g)sin 29 
(formula (1.6) of [l]) and, in this connection, it is stated in Particu- 
lar that the axis of a gyrocompass with a Schuler period on a fixed base 
“indicates the pseudohorizontal plane exactly as does the gyrohorizon of 
Ishlinskii”. 

Let us note, however, that the angle between the direction of the 
force of attraction and the direction to the center of the earth (the 
pseudovertical in the Merkin terminology) is a quantity of the aame 
order as is the angle between the vertical and the pseudovertical. If it 
is assumed that the surface of the earth has the shape of a ClairaUt 
ellipsoid, then the angle between the vertical and the direction to the 
center of the earth is y, = 9 - p*. where 9 is the geographic and Q' the 
geocentric latitude of the locality and 

tan4 = 
e2 cos cp’ sin cp’ 
1 - ez cos2 cp’ 

a2 - b” 
e2 =a2 

Here e2 = 0.0067 is the square of the first eccentricity of the 
terrestrial meridian. To the accuracy of higher order infinitesimals 
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than e2, it c8n be considered that 

11) = ‘lz ea sin 2qY (2*V 

Furthermore, if it is assumed that the earth is an ellipsoid of 
revolution of constant density, then by starting from the theory of the 
Newtonian potential [e-81, the projection of the terrestrial gravity 
vector in the direction to the center of the earth will be 

and on a perpendicular plane 

Here f = 6.66 x lo’8 cm3g’lsec-* is the gravitational constant, D = 
15.52 g co? is the mean density of the terrestrial spheroid and R the 
distance from the center of the earth to a given point of its surface. 
Hence, the angle between the direction of the force of attraction and 
the direction to the center of the earth (the pseudovertical) is 

i.e. to the same degree of accuracy (retaining small quantities on the 
order of e2> 

9’ = 3/s e2 sin rp’ CR4 9’ = sf5I) (2.4) 

Thus, taking account of the flattening of the earth requires a clear 
differentiation between the three directions at each point of the earth’s 
surface: the direction to the center of the earth or the pseudovertical; 
the direction of the force of attraction or the lines of force of the 
earth’s gravitational field, which we shall designate the gravitational 
vertical; and the force of gravity or the normal to the surface of the 
terrestrial spheroid, i.e. the true vertical. 

The angle given by formula (1.6) in t13 is actually the angle between 
the gravitational and true verticals and is two-fifths of the angle be- 
tween the pseudovertical and the vertical. 

Within the scope of the assumptions on the spherical shape of the 
earth, the gravitational vertical coincides with the pseudovertical. 
Nevertheless, it should be stated that the gyrocompass with a Schuler 
period on a fixed base, just as the Geckeler gyrohorizon, shows the 
gravitational vertical, since the direction of the axes of these instru- 
ments is determined by precisely the direction of the force of attrac- 
tion and not by the geometric direction to the center of the earth. 

It was shown in Section 1 that for a deviation of the gravitational 
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vertical from the pseudovertical, a gyrocompass very similar to the 
Geckeler gyrohorizon on a fixed base indicates the direction of the 
gravitational vertical, 

In this connection, it is natural to consider a gyrocompass whose im- 
perturbable sensing element retains the direction of the gravitational 
vertical and the plane of the meridian (to the accuracy of a course 
correction) for any motion of the base along the surface of the 
terrestrial spheroid. 

3. Let us introduce the $r& coordinate system in such a way that the 
g-axis is directed upward along the gravitational vertical, the g-axis 
eastward along the parallels and the q-axis forms a right trihedron with 
the g- and c-axes. This system transforms into the geographically 
oriented coordinate system Ed when a rotation through an angle 2/5 p 
is made around the E-axis. Correspondingly, the projections of the abso- 
lute velocity V of a point 0 moving along- the surface of 
spheroid onto the O@lS-axes will have the following form 
of higher order infinitesimals than y): 

To this same 
without stating 

It is easy to 
the projections 

the terrestrial 
(to the accuracy 

-2/&v, (3.1) 

accuracy (which we shall henceforth retain everywhere 
;his particularly) we will have 

wt 29’ (3.2) 

see that the angular velocity of the trihedron c&l3 has 

Let us now introduce the O,oY”zo coordinate system which is obtained 
from the qt73 system by a rotation around the (-axis through the angle 
i? = tan-lcvq/vS,. Then the vector of the absolute velocity V of a point 
0 will lie in the Ox”zo plane and 

II,0 = I/, v,o = 0, Vp = - “is* V sin 6 (3.4) 

The angular velocity of the trihedron Ox”yoP has the projections 
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(3.5) 

“Ihe projections of the absolute acceleration w of the point 0 on the 
Ox"yozo-axes equal, respectively 

W,O = ri,. -+- OVJZ, - OZOVUD == V - ; %# ; sin 6 

%o = V,O + ;,q* - O,Y,O = OV (3.6) 

W Z” = VZD + Cl&V,~ - OYOVXO =L 

=-- “;1” -$[g(sinz6 wt ~I’-wI~I’) -+-$Tisin@ +$0Veos6j 

The force acting on the gyrorotor at its center of gravity is, in 
projections on the OxOy”zO-axes 

(Here g is not the acceleration due to gravity, but the acceleration 
of the gravitational force defined by formula (2.2). ) 

Associating the Qzyz coordinate system with the Qx”yuzo trihedron by 
means of the angles o[, p and y, exactly as in 121 t and substituting the 
appropriate expressions for the angular velocity of the trihedron Oxyz 
and the moments of the force Q in equations (1,3), we obtain the equa- 
tions of motion of the gyrorotor 

23 60s 8 [ 0xo (CDS a sin 7 -+ sin a sin pi cos 7) + oLt- (sin OG sin y - (3.8) 

- cos 01 sin p 0.x y) i_ (w -+- 4) Cos fi COS T + ii sin +fl =f: 

= ml [- ~0,~ sin a cos f3 -+ w,q cos a cos f3 + fg -t up) sin fij - M,’ 

g(= ~0s E) =‘mE [wzO (~0s a co3 y - sin a sin fl sin y) -+ 

_i- zuyO (sin a eos r _t co8 a sin F sin 7) - (g -4- ztt~) Cos @ sin rf + My’ 

(2B eos E [CO,0 (cos a CQS r - sin cc sin p sin r) + WY0 (sin 01 cos r-t_ 

+ co3 cl sin /3 sin y) - (w + c;l) cos p sin r + S co3 y] = M,’ 

2B sin 8 I-- ox0 sin a co3 p $ otJO co5 a co.3 b f (0 +- L) sin fi -f- +I = - N 

Setting ci = p = y = 0 in these equations we obtain 

2Bo cos E = ??&Ov - iWz’ 
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$fu cos E) = mlir - ml -$ * f sin 6 + MV’ 

- 2B cose;+q WI cp’sin 6 COS 6 = M,’ 

2B sin 8 $ [ 1+ + 9 (sin” 6 cot cp’ - tatt cp’) 
1 

= - N 

Hence, if the moments 

P-9) 

Mx’=O 

(3.10) 
act continuously on the gyrorotor and the spring moment changes accord- 
ing to the law 

N = _ 4B2 sine cosE 
IlllR 

1 
- -$ $7 (ti ‘p’ - sin2 6 c0t q~‘)] (3.11) 

and the gyroscope hunting angle aa is set at the initial instant accord- 
ing to the condition 

(3.12) 

then the gyroscope will indicate the direction of the gravitational 
vertical and the plane of the meridian to the accuracy of the course 
correction 

6 = m-1 
VN 

vE + RlJ cos cp’ 

no matter what the maneuver of the base, if only a = /3 = y = 0 at the 
initial instant. ‘Ihe moments (3.10) are generated artificially and are 
imposed on the gyrorotor from without. 

A rather different method of producing a gyrocompass which is not 
perturbable in the mentioned sense, wherein the additional moments are 
produced within the gyrorotor itself, is of interest. Up to now the 
center of gravity of the gyrorotor was assumed to be disposed fixedly at 
a distance -1 from the center of buoyancy in the z direction. Let us 
assume now that by using some kind of apparatus the center of gravity 
can be displaced by small distances within the gyrorotor in conformity 
with signals being sent from a certain computer. lhen it seems that it 
is sufficient that the metacentric height 2 change according to the law 

cot qY-- 2V dr 1 I (3.13) 
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and that the direction from the center of buoyancy toward the center of 
gravity be inclined with respect to the z-axis at the angle 

(3.14) 

in the xz-plane. Upon compliance with conditions (3.13) and (3.14) to- 
gether with (3.11) and (3.12) and for zero initial conditions, the 
sensing element of the gyrohorizon will be oriented continuously along 
the gravitational vertical and the plane of the meridian (taking account 
of the course deviation). The correctness of this statement follows 
directly from (3.8), upon substitution of the appropriate additional 
moments which arise during such a deviation of the center of gravity 
from the z-axis 

Alifs’ = 0 

lug’ = - em1 [w,~ (cos cc sin r + sin a sin p cos r) + 

+ WY0 (sin 0: sin r - cos u sin p cos r) + (g + z&o) c0.s~ cos r] 

M,’ = 0mZ [ZL+ sin a cos fJ + 20~0 cos a sin @ + (g + w,o) sin fi] 

Hence, in principle, it is possible to construct a gyrohorizon which 
will take the nonsphericity of the earth into account with the accuracy 
of the eccentricity squared c2, and which will constantly indicate eithe: 
the gravitational vertical or the true vertical El] and the meridian 
plane with the accuracy of a course correction. However, in connection 
with the remarks made in Section 1, it is interesting to estimate the 
deviation from the gravitational vertical and from the gyro-north of the 
Oeckeler-Ishlinskii gyrohorizon [!2l, associated with the flattening of 
the figure of the earth. 

4. Let us transform to the equations of small vibrations by assuming 
a, & y and 6 = E - u(t), where a(t) satisfies the condition 2Bcoso=al 
and their derivatives are first order infinitesimals, exactly as is y, 
and higher order infinitesimals are discarded. We then obtain 

+isin6 cos 6 wt cp’ -+-?j--$ 
( )I c 

x=$ u+ iP 
> 

:(x--p)+ i(v +01)(x ---~)=-$~~[-t~~1~‘+sin~6 ti $‘+ 

+ isin 
( 
cos~foot~‘-.- ; $1 (~=J$2$6) 

These equations differ from equations (5.3) of f21 by the presence 
of non-zero right-hand sides which depend on the velocity of the craft, 
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the course and the latitude. 

In the case of a fixed base, we have small vibrations around the con- 
stant values 

Since V = UR cos cp’, 0 = U sin 9’ 

215 Y = 1,‘2(R&‘g> 
+ O(y) and taking into account that 

sin 29’ (the angle between the vertical and the 
gravitational vertical) and therefore 

(4.3’ , 

we obtain that the axis of the gyrorotor on a fixed base deviates from 
the gravitational vertical by the angle 

go = - 6/2i e4 sin3v’ cos q’ (4.4) 

The maximum deviation occurs at a q’ = 60° latitude and is PO ~(Lx = 
- 0.7” for a 4’ angle between the true and gravitational verticals. The 
relative error in measuring the angle between the true and gravitational 
verticals by using the gyrohorizon is determined by the expression 

iflo;_3 2 ‘2 I 
-_ 

2/5* 
%e sm tp 

and reaches a maximum value of 0.004. Hence, the Geckeler gyrohorizon 

indicates the direction of the gravitational vertical, i.e. the direc- 
tion of the force of attraction at a given point of the earth, with a 
sufficiently high degree of accuracy on a fixed base. 

Equations (4.1) permit an estimate of the drift of a gyrohorizon on 
a moving base also. Thus, for a constant velocity at a constant course, 
we have (neglecting the very slow change in latitude) 

(4.6) 

For example, let a craft move on a northward course at a velocity of 
20 knots at a 60* latitude. ‘Ihen a0 = 8’, PO = 0.8” and ya = 0.02”. ‘Ihe 
quantity 6, depends on the angle o. If the parameters of the gyrorotor 
are selected and that D = yoI then 6, -;I 315 y = 5.9’. 
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